1932

Abstract

Many roles for sphingolipids have been identified in mammals. Available data suggest that sphingolipids and their intermediates also have diverse roles in . These roles include signal transduction during the heat stress response, regulation of calcium homeostasis or components in calcium-mediated signaling pathways, regulation of the cell cycle, and functions as components in trafficking of secretory vesicles from the endoplasmic reticulum to the Golgi apparatus and as the lipid moiety in many glycosylphosphatidylinositol-anchored proteins. is likely to be the first organism in which all genes involved in sphingolipid metabolism are identified. This information will provide an unprecedented opportunity to determine, for the first time in any organism, how sphingolipid synthesis is regulated. Through the use of both genetic and biochemical techniques, the identification of the complete array of processes regulated by sphingolipid signals is likely to be possible, as is the quantification of the physiological contribution of each.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.biochem.67.1.27
1998-07-01
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/biochem/67/1/annurev.biochem.67.1.27.html?itemId=/content/journals/10.1146/annurev.biochem.67.1.27&mimeType=html&fmt=ahah

Literature Cited

  1. Hakomori S. 1996. Cancer Res. 56:5309–18 [Google Scholar]
  2. Schnaar RL, Mahoney JA, Swank-Hill P, Tiemeyer M, Needham LK. 1994. Prog. Brain Res. 101:185–97 [Google Scholar]
  3. Karlsson K-A. 1989. Annu. Rev. Biochem. 58:309–50 [Google Scholar]
  4. Hakomori S. 1981. Annu. Rev. Biochem. 50:733–64 [Google Scholar]
  5. Hannun YA, Loomis CR, Merrill AH Jr, Bell RM. 1986. J. Biol. Chem. 261:12604–9 [Google Scholar]
  6. Hannun YA, Bell RM. 1993. Adv. Lipid. Res. 25:27–41 [Google Scholar]
  7. Kim M-Y, Linardic C, Obeid LM, Hannun YA. 1991. J. Biol. Chem. 266:484–89 [Google Scholar]
  8. Mathias S, Dressler KA, Kolesnick RN. 1991. J. Biol. Chem. 88:10009–13 [Google Scholar]
  9. Hannun YA. 1996. Science 274:1855–59 [Google Scholar]
  10. Spiegel S, Foster D, Kolesnick RN. 1996. Curr. Opin. Cell Biol. 8:159–67 [Google Scholar]
  11. Kyriakis JM, Avruch J. 1996. J. Biol. Chem. 271:24313–16 [Google Scholar]
  12. Ballou LR, Laulederkind SJF, Rosloniec EF, Raghow R. 1996. Biochim. Biophys. Acta Lipids. Lipid. Metab. 1301:273–87 [Google Scholar]
  13. Adam D, Adam-Klages S, Kronke M. 1995. J. Inflamm. 47:61–66 [Google Scholar]
  14. Merrill AH Jr, Liotta DC, Riley RE. 1996. In Lipid Second Messengers, ed. RM Bell 8205–37 New York: Plenum
  15. zu Heringdorf DM, van Koppen CJ, Jakobs KH. 1997. FEBS Lett. 410:34–38 [Google Scholar]
  16. Seufferlein T, Rozengurt E. 1995. J. Biol. Chem. 270:24343–51 [Google Scholar]
  17. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B. et al. 1996. Science 274:546–63 [Google Scholar]
  18. Lester RL, Dickson RC. 1993. Adv. Lipid. Res. 26:253–72 [Google Scholar]
  19. Merrill AH Jr, Jones DD. 1990. Biochim. Biophys. Acta 1044:1–12 [Google Scholar]
  20. Downing DT. 1992. J. Lipid Res. 33:301–13 [Google Scholar]
  21. Merrill AH Jr, Sweeley CC. 1996. In Biochemistry of Lipids, Lipoproteins and Membranes, ed. DE Vance, JE Vance 309–39 New York: Elsevier Science
  22. Miyake Y, Kozutsumi Y, Nakamura S, Fujita T, Kawasaki T. 1995. Biochem. Biophys. Res. Commun. 211:396–403 [Google Scholar]
  23. Zweerink MM, Edison AM, Wells GB, Pinto W, Lester RL. 1992. J. Biol. Chem. 267:25032–38 [Google Scholar]
  24. Wang E, Norred WP, Bacon CW, Riley RT, Merrill AH Jr. 1991. J. Biol. Chem. 266:14486–90 [Google Scholar]
  25. Wu W-I, McDonough VM, Nickels JT Jr, Ko J, Fischl AS. et al. 1995. J. Biol. Chem. 270:13171–78 [Google Scholar]
  26. Mandala SM, Thornton RA, Frommer BR, Curotto JE, Rozdilsky W. et al. 1995. J. Antibiot. 48:349–56 [Google Scholar]
  27. Nagiec MM, Nagiec EE, Baltisberger JA, Wells GB, Lester RL. et al. 1997. J. Biol. Chem. 272:9809–17 [Google Scholar]
  28. Saba JD, Nara F, Gottlieb D, Bielawska A, Garrett S. et al. 1997. The BST1 gene of Saccharomyces cerevisiae is the sphingosine–1-phosphate lyase, and its deletion identifies phytosphingosine–1-phosphate as a regulator of proliferation.. Presented at Int. Union Biochem. Mol. Biol. Satellite Symp., Napa Valley, CA (Abstr
  29. Soba JD, Nora F, Brelawska A, Garrett S, Hannun YA. 1997. 27226087–90
  30. Qie LX, Nagiec MM, Baltisberger JA, Lester RL, Dickson RC. 1997. J. Biol. Chem. 272:16110–17 [Google Scholar]
  31. Mao CG, Wadleigh M, Jenkins GM, Hannun YA, Obeid LM. 1997. J. Biol. Chem. 272:28690–94 [Google Scholar]
  32. Lanterman MM, Saba JD. 1997. Characterization of sphingosine kinase activity in S. cerevisiae and isolation of sphingosine kinase deficient mutants.. Presented at Int. Union Biochem. Mol. Biol. Satellite Symp., Napa Valley, CA (Abstr
  33. Patton JL, Lester RL. 1991. J. Bacteriol. 173:3101–8 [Google Scholar]
  34. Hechtberger P, Zinser E, Saf R, Hummel K, Paltauf F. et al. 1994. Eur. J. Biochem. 225:641–49 [Google Scholar]
  35. Smith SW, Lester RL. 1974. J. Biol. Chem. 249:3395–3405 [Google Scholar]
  36. van Echten G, Sandhoff K. 1993. J. Biol. Chem. 268:5341–44 [Google Scholar]
  37. Puoti A, Desponds C, Conzelmann A. 1991. J. Cell Biol. 113:515–25 [Google Scholar]
  38. Rosenwald AG, Pagano RE. 1993. Adv. Lipid. Res. 26:101–18 [Google Scholar]
  39. Sandhoff K, van Echten G. 1993. Adv. Lipid. Res. 26:119–42 [Google Scholar]
  40. Allan D, Raval PJ. 1987. Biochim. Biophys. Acta 897:355–63 [Google Scholar]
  41. Wu G, Lu ZH, Ledeen RW. 1995. J. Neurochem. 65:1419–22 [Google Scholar]
  42. Schneiter R, Hitomi M, Ivessa AS, Fasch EV, Kohlwein SD. et al. 1996. Mol. Cell. Biol. 16:7161–72 [Google Scholar]
  43. Carman GM, Zeimetz GM. 1996. J. Biol. Chem. 271:13293–96 [Google Scholar]
  44. Jackowski S. 1996. J. Biol. Chem. 271:20219–22 [Google Scholar]
  45. Greenberg ML, Lopes JM. 1996. Microbiol. Rev. 60:1–20 [Google Scholar]
  46. Paltauf F, Kohlwein SD, Henry SA. 1992. In The Molecular and Cellular Biology of the Yeast Saccharomyces, ed. EW Jones, JR Pringle, JR Broach 2415–500 Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press. 1st ed
  47. Goldstein JL, Brown MS. 1990. Nature 343:425–30 [Google Scholar]
  48. Parks LW, Casey WM. 1995. Annu. Rev. Microbiol. 49:95–116 [Google Scholar]
  49. Mandon EC, van Echten G, Birk R, Schmidt RR, Sandhoff K. 1991. Eur. J. Biochem. 198:667–74 [Google Scholar]
  50. Cleves AE, McGee TP, Bankaitis VA. 1991. Trends Cell Biol. 1:30–34 [Google Scholar]
  51. Kearns BG, McGee TP, Mayinger P, Gedvilaite A, Phillips SE. et al. 1997. Nature 387:101–5 [Google Scholar]
  52. Dickson RC, Wells GB, Schmidt A, Lester RL. 1990. Mol. Cell. Biol. 10:2176–81 [Google Scholar]
  53. Wells GB, Lester RL. 1983. J. Biol. Chem. 258:10200–3 [Google Scholar]
  54. Nagiec MM, Wells GB, Lester RL, Dickson RC. 1993. J. Biol. Chem. 268:22156–63 [Google Scholar]
  55. Nagiec MM, Baltisberger JA, Wells GB, Lester RL, Dickson RC. 1994. Proc. Natl. Acad. Sci. USA 91:7899–7902 [Google Scholar]
  56. Pinto WJ, Srinivasan B, Shepherd S, Schmidt A, Dickson RC. et al. 1992. J. Bacteriol. 174:2565–74 [Google Scholar]
  57. Lester RL, Wells GB, Oxford G, Dickson RC. 1993. J. Biol. Chem. 268:845–56 [Google Scholar]
  58. Patton JL, Srinivasan B, Dickson RC, Lester RL. 1992. J. Bacteriol. 174:7180–84 [Google Scholar]
  59. Wells GB, Dickson RC, Lester RL. 1996. Heat shock increases ceramide levels in Saccharomyces cerevisiae.. Presented at ASBMB Satellite Meet. “Lipid Second Messengers,” Am. Soc. Biochem. Mol. Biol., New Orleans, LA (Abstr. L31
  60. Dickson RC, Nagiec EE, Skrzypek M, Tillman P, Wells GB. et al. 1997. J. Biol. Chem. 272:47 In press [Google Scholar]
  61. Parsell DA, Lindquist S. 1994. In The Biology of Heat Shock Proteins and Molecular Chaperones, ed. RI Morimoto, A Tissieres, C Georgopoulos 457–94 Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press
  62. Craig EA, Weismann JS. 1994. Cell 78:365–72 [Google Scholar]
  63. Johnson JL, Craig EA. 1997. Cell 90:201–4 [Google Scholar]
  64. De Virgilio C, Hottiger T, Dominguez J, Boller T, Wiemken A. 1994. Eur. J. Biochem. 219:179–86 [Google Scholar]
  65. Parrou JL, Teste MA, Francois J. 1997. Microbiology 143:1891–1900 [Google Scholar]
  66. Crowe JH, Hoekstra FA, Crowe LM. 1992. Annu. Rev. Physiol. 54:579–99 [Google Scholar]
  67. Iwahashi H, Obuchi K, Fujii S, Komatsu Y. 1995. Cell. Mol. Biol. 41:763–69 [Google Scholar]
  68. Colaco C, Kampinga J, Roser B. 1995. Science 268:788 [Google Scholar]
  69. Schutze S, Potthoff K, Machleidt T, Berkovic D, Wiegmann K. et al. 1992. Cell 71:765–76 [Google Scholar]
  70. Obeid LM, Linardic CM, Karolak LA, Hannun YA. 1993. Science 259:1769–71 [Google Scholar]
  71. De Virgilio C, Burckert N, Bell W, Jeno P, Boller T. et al. 1993. Eur. J. Biochem. 212:315–23 [Google Scholar]
  72. Sur IP, Lobo Z, Maitra PK. 1994. Yeast 10:199–209 [Google Scholar]
  73. Gounalaki N, Thireos G. 1994. EMBO J. 13:4036–41 [Google Scholar]
  74. Lindquist S, Kim G. 1996. Proc. Natl. Acad. Sci. USA 93:5301–6 [Google Scholar]
  75. Marchler G, Schuller C, Adam G, Ruis H. 1993. EMBO J. 12:1997–2003 [Google Scholar]
  76. Kobayashi N, McEntee K. 1993. Mol. Cell. Biol. 13:248–56 [Google Scholar]
  77. Ruis H, Schuller C. 1995. BioEssays 17:959–65 [Google Scholar]
  78. Martinez-Pastor MT, Marchler G, Schuller C, Marchler-Bauer A, Ruis H. et al. 1996. EMBO J. 15:2227–35 [Google Scholar]
  79. Schmitt AP, McEntee K. 1996. Proc. Natl. Acad. Sci. USA 93:5777–82 [Google Scholar]
  80. Chang Y, Abe A, Shayman JA. 1995. Proc. Natl. Acad. Sci. USA 92:12275–79 [Google Scholar]
  81. Verheij M, Bose R, Lin XH, Yao B, Jarvis WD. et al. 1996. Nature 380:75–79 [Google Scholar]
  82. Bose R, Verheij M, Haimovitz-Friedman A, Scotto K, Fuks Z. et al. 1995. Cell 82:405–14 [Google Scholar]
  83. Balsinde J, Balboa MA, Dennis EA. 1997. J. Biol. Chem. 272:20373–77 [Google Scholar]
  84. Jaffrezou JP, Levade T, Bettaieb A, Andrieu N, Bezombes C. et al. 1996. EMBO J. 15:2417–24 [Google Scholar]
  85. Ella KM, Qi C, Dolan JW, Thompson RP, Meier KE. 1997. Arch. Biochem. Biophys. 340:101–10 [Google Scholar]
  86. Cox JS, Shamu CE, Walter P. 1993. Cell 73:1197–1206 [Google Scholar]
  87. Mori K, Ma W, Gething MJ, Sambrook J. 1993. Cell 74:743–56 [Google Scholar]
  88. Welihinda AA, Tirasophon W, Green SR, Kaufman RJ. 1997. Proc. Natl. Acad. Sci. USA 94:4289–94 [Google Scholar]
  89. McCusker JH, Perlin DS, Haber JE. 1987. Mol. Cell. Biol. 7:4082–88 [Google Scholar]
  90. Serrano R. 1993. FEBS Lett. 325:108–11 [Google Scholar]
  91. Serrano R. 1983. FEBS Lett. 156:11–14 [Google Scholar]
  92. Chang A, Slayman CW. 1991. J. Cell Biol. 115:289–95 [Google Scholar]
  93. Estrada E, Agostinis P, Vandenheede JR, Goris J, Merlevede W. et al. 1996. J. Biol. Chem. 271:32064–72 [Google Scholar]
  94. Brandao RL, de Magalhaes-Rocha NM, Alijo R, Ramos J, Thevelein JM. 1994. Biochim. Biophys. Acta 1223:117–24 [Google Scholar]
  95. Patton JL, Lester RL. 1992. Arch. Biochem. Biophys. 292:70–76 [Google Scholar]
  96. Spiegel S, Merrill AH Jr. 1996. FASEB J. 10:1388–97 [Google Scholar]
  97. Beeler T, Gable K, Zhao C, Dunn T. 1994. J. Biol. Chem. 269:7279–84 [Google Scholar]
  98. Zhao C, Beeler T, Dunn T. 1994. J. Biol. Chem. 269:21480–88 [Google Scholar]
  99. Nwaka S, Kopp M, Holzer H. 1995. J. Biol. Chem. 270:10193–98 [Google Scholar]
  100. DeMesquita JF, Paschoalin VMF, Panek AD. 1997. Biochim. Biophys. Acta Gen. Subj. 1334:233–39 [Google Scholar]
  101. Zhang YH, Yao B, Delikat S, Bayoumy S, Lin XH. et al. 1997. Cell 89:63–72 [Google Scholar]
  102. Fishbein JD, Dobrowsky RT, Bielawska A, Garrett S, Hannun YA. 1993. J. Biol. Chem. 268:9255–61 [Google Scholar]
  103. Nickels JT, Broach JR. 1996. Genes Dev. 10:382–94 [Google Scholar]
  104. Dobrowsky RT, Kamibayashi C, Mumby MC, Hannun YA. 1993. J. Biol. Chem. 268:15523–30 [Google Scholar]
  105. Schekman R. 1996. Cell 87:593–95 [Google Scholar]
  106. Rothman JE, Wieland FT. 1996. Science 272:227–34 [Google Scholar]
  107. Horvath A, Suetterlin C, Manning-Krieg U, Movva NR, Riezman H. 1994. EMBO J. 13:3687–95 [Google Scholar]
  108. Skrzypek M, Lester RL, Dickson RC. 1997. J. Bacteriol. 179:1513–20 [Google Scholar]
  109. van der Vaart JM, Caro LHP, Chapman JW, Klis FM, Verrips CT. 1995. J. Bacteriol. 177:3104–10 [Google Scholar]
  110. Lu C-F, Kurjan J, Lipke PN. 1994. Mol. Cell. Biol. 14:4825–33 [Google Scholar]
  111. de Nobel H, Lipke PN. 1994. Trends Cell Biol. 4:42–45 [Google Scholar]
  112. Doering TL, Schekman R. 1996. EMBO J. 15:182–91 [Google Scholar]
  113. Wuestehube LJ, Schekman R. 1992. Methods Enzymol. 219:124–36 [Google Scholar]
  114. Barlowe C, Orci L, Yeung T, Hosobuchi M, Hamamoto S. et al. 1994. Cell 77:895–907 [Google Scholar]
  115. Bednarek SY, Ravazzola M, Hosobuchi M, Amherdt M, Perrelet A. et al. 1995. Cell 83:1183–96 [Google Scholar]
  116. Simons K, Van Meer G. 1988. Biochemistry 27:6197–6202 [Google Scholar]
  117. Brown DA. 1992. Trends Cell Biol. 2:338–43 [Google Scholar]
  118. Simons K, Ikonen E. 1997. Nature 387:569–72 [Google Scholar]
  119. Conzelmann A, Puoti A, Lester RL, Desponds C. 1992. EMBO J. 11:457–66 [Google Scholar]
  120. Sipos G, Reggiori F, Vionnet C, Conzelmann A. 1997. EMBO J. 16:3494–3505 [Google Scholar]
  121. Reggiori F, Canivenc-Gansel E, Conzelmann A. 1997. EMBO J. 16:3506–18 [Google Scholar]
  122. Fankhauser C, Homans SW, Thomas-Oates JE, McConville MJ, Desponds C. et al. 1993. J. Biol. Chem. 268:26365–74 [Google Scholar]
  123. McConville MJ, Ferguson MA. 1993. Biochem. J. 294:305–24 [Google Scholar]
  124. Englund PT. 1993. Annu. Rev. Biochem. 62:121–38 [Google Scholar]
  125. Takeda J, Kinoshita T. 1995. Trends Biochem. Sci. 20:367–71 [Google Scholar]
  126. Leidich SD, Drapp DA, Orlean P. 1994. J. Biol. Chem. 269:10193–96 [Google Scholar]
  127. Schoenbaechler M, Horvath A, Fassler J, Riezman H. 1995. EMBO J. 14:1637–45 [Google Scholar]
  128. Vossen JH, Ram AFJ, Klis FM. 1995. Biochim. Biophys. Acta 1243:549–51 [Google Scholar]
  129. Benghezal M, Lipke PN, Conzelmann A. 1995. J. Cell Biol. 130:1333–44 [Google Scholar]
  130. Lu C-F, Montijn RC, Brown JL, Klis F, Kurjan J. et al. 1995. J. Cell Biol. 128:S333–40 [Google Scholar]
  131. Vosson JH, Muller WH, Lipke PN, Klis FM. 1997. J. Bacteriol. 179:2202–9 [Google Scholar]
  132. Sipos G, Puoti A, Conzelmann A. 1994. EMBO J. 13:2789–96 [Google Scholar]
  133. Schena M, Shalon D, Davis RW, Brown PO. 1995. Science 270:467–70 [Google Scholar]
  134. Oh C-S, Toke DA, Mandala S, Martin CE. 1997. J. Biol. Chem. 272:17376–84 [Google Scholar]
  135. Dickson RC, Nagiec EE, Wells GB, Nagiec MM, Lester RL. 1997. J. Biol. Chem. 272:29620–25 [Google Scholar]
  136. Leber A, Fischer P, Schneiter R, Kohlwein SD, Daum G. 1997. FEBS Lett. 411:211–14 [Google Scholar]
  137. Buede R, Rinker-Schaffer C, Pinto WJ, Lester RL, Dickson RC. 1991. J. Bacteriol. 173:4325–32 [Google Scholar]
  138. Grilley MM, Stock SD, Dickson RC, Lester RL, Takemoto JY. 1997. J. Biol. Chem. In press [Google Scholar]
  139. Heak D, Gable K, Beeler T, Dunn T. 1997. J. Biol. Chem. 272:29704–10 [Google Scholar]
  140. Beeler TJ, Fu D, Rivera J, Monaghan E, Gable K, Dunn TM. 1997. Mol. Gen. Genet. 2SS:570–79 [Google Scholar]
/content/journals/10.1146/annurev.biochem.67.1.27
Loading
/content/journals/10.1146/annurev.biochem.67.1.27
Loading

Data & Media loading...

  • Article Type: Introduction
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error